Discrete Functions
Mixing properties for some classes of permutations on $\mathbb{F}_2^n$
L. A. Karpova,
I. A. Pankratova Tomsk State University
Abstract:
In the class
$\mathcal{F}_{n,k}$ of permutations on
$\mathbb{F}_2^n$ with coordinate functions essentially depending on exactly
$k$ variables,
$k<n$, we consider two subclasses
$S_{n,k}$ and
$P_{n,k}$.
The method for constructing a function
$F(x_1,\ldots,x_n)=(f_1,\ldots,f_n)\in S_{n,k}$ starts from some function $G(x_1,\ldots,x_k)=(g_1,\ldots, g_k)\in \mathcal{F}_{k,k}$. Then we set
$f_i(x_1,\ldots,x_n)=g_i(x_1,\ldots,x_k)$ for
$i=1,\ldots,k$ and $f_i(x_1,\ldots,x_n)=x_i\oplus h_i(x_1,\ldots,x_{i-1})$ for
$i=k+1,\ldots,n$, where
$h_i$ is any function essentially depending on exactly
$k-1$ variables from
$x_1,\ldots,x_{i-1}$.
The method for constructing a function
$F\in P_{n,k}$ is used in the case when
$k|n$, i.e.
$n=sk$ for some
$s\in\mathbb{N}$. We construct
$s$ functions
$G_1,\ldots,G_s\in\mathcal{ F}_{k,k}$,
$G_i=\left(g_1^{(i)},\ldots,g_k^{(i)}\right)$,
$i=1,\ldots,s$, and set $f_{tk+i}(x_1,\ldots,x_n)=g_i^{(t+1)}(x_{tk+1},\ldots,x_{(t+1)k})$,
$t=0,\ldots,s-1$,
$i=1,\ldots,k$. Mixing properties of such function are discussed, an algorithm for calculating elementary exponents is given.
Keywords:
essential dependence of a function on a variable, mixing properties of the function, elementary exponent.
UDC:
519.7
DOI:
10.17223/2226308X/12/13