RUS  ENG
Full version
JOURNALS // Prikladnaya Diskretnaya Matematika. Supplement // Archive

Prikl. Diskr. Mat. Suppl., 2018 Issue 11, Pages 6–9 (Mi pdma384)

Theoretical Foundations of Applied Discrete Mathematics

On mixing digraphs of nonlinear substitutions for binary shift registers

V. S. Grigorievab

a Financial University under the Government of the Russian Federation, Moscow
b "Positive Technologies", Moscow

Abstract: In this paper, we research the class $R(n,m)$ of substitutions on $n$-dimensional vector space produced by the binary left-shift registers of the length $n$ with one feedback $f(x_1,\dots,x_n)=x_1\oplus\psi(x_2,\dots,x_n)$ essentially depending on $m$ variables, $3\le m\le n$. We have obtained the following double-ended estimate for the exponent of the mixing digraphs $\Gamma(g)$ for nonlinear substitutions $g\in R(n,m)$:
$$ n+\left\lceil\frac{n-1}{m-1}\right\rceil-1\le\exp{\Gamma(g)}\le\Delta(D)+n+\left\lfloor\frac{(n-2)^2}2\right\rfloor-1, $$
where $D(g)=\{i_1,\dots,i_m\}$ is the set of indexes of essential variables of the shift register feedback function $f$, $1=i_1<\dots<i_m\le n$, $m\le n$; $\Delta(D)=\max\{i_2-i_1,\dots,i_m-i_{m-1},n-i_m\}$. We have also obtained some upper-bound estimates for the sum and for the ratio of exponents of mixing digraphs of substitution $g\in R(n,m)$ and its inverse substitution $g^{-1}$:
\begin{gather*} \exp{\Gamma(g)}+\exp{\Gamma(g^{-1})}\le2\left(\Delta(D)+\left\lfloor\frac{n^2}m\right\rfloor\right)+i_m,\\ \frac{\exp{\Gamma(g)}}{\exp{\Gamma(g^{-1})}}\le\frac{\Delta(D)+n+\left\lfloor\frac{(n-2)^2}2\right\rfloor-1}{n+\left\lceil\frac{n-1}{m-1}\right\rceil-1}. \end{gather*}


Keywords: mixing digraph approach, primitive digraph, exponent of graph, shift register, Frobenius number.

UDC: 519.1

DOI: 10.17223/2226308X/11/1



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026