Discrete Functions
Some decompositions for quadratic Boolean threshold functions
A. N. Shurupov Moscow Technological University, Moscow
Abstract:
Arbitrary quadratic Boolean threshold functions
$f$ defined by a quadratic form $w(x_1,\dots,x_n)=e(x_1,\dots,x_m)+a(x_{m+1},\dots,x_n)$ and a threshold
$t$ are considered together with the quadratic forms
$e$ and
$a$ defined by the corresponding constant matrices
$1_m$ and
$a_{n-m}$. We propose a criterion for existence of a non-trivial decomposition of such a function
$f$, namely: such a decomposition exists if and only if any of the following conditions holds:
1)
$t<m^2$ and there exists
$j$ in
$\{1,\dots,n-m\}$ such that $\lfloor t\rfloor_e+a{(j-1)}^2\le t<\lceil t\rceil_e$;
2)
$t>m^2$ and there exist
$i$ in
$\{1,\dots,m\}$ and
$j$ in
$\{1,\dots,n-m\}$ such that
$$
\max\{(i-1)^2+a(n-m)^2,m^2+a(j-1)^2\}\le t <i^2+aj^2;
$$
3)
$t>m^2$ and there exist
$i$ in
$\{1,\dots,m\}$,
$j$ and
$l$ in
$\{1,\dots,n-m\}$ such that
$j<l$ and
$$
\max\{(i-1)^2+a(l-1)^2,m^2+a(j-1)^2\}\le t<\min\{al^2,i^2+aj^2\},
$$
where
$\lfloor t\rfloor_e=\max\{z\colon z=e(x),\ x\in\{0,1\}^m,\ z\le t\}$, $\lceil t\rceil_e=\min\{z\colon z=e(x),\ x\in\{0,1\}^m,\ z>t\}$.
Keywords:
quadratic Boolean threshold functions, decomposition.
UDC:
512.55
DOI:
10.17223/2226308X/10/24