RUS  ENG
Full version
JOURNALS // Prikladnaya Diskretnaya Matematika. Supplement // Archive

Prikl. Diskr. Mat. Suppl., 2017 Issue 10, Pages 131–134 (Mi pdma340)

This article is cited in 3 papers

Applied Theory of Coding, Automata and Graphs

About primitive regular graphs with exponent 2

M. B. Abrosimova, S. V. Kostinb

a Saratov State University, Saratov
b Moscow Technological University, Moscow

Abstract: Primitive regular graphs with exponent 2 are considered. We refine the known result that the number of edges of an undirected $n$-vertex graph with exponent 2 must be at least $(3n-3)/2$ for odd $n$ and $(3n-2)/2$ for an even $n$. For regular $n$-vertex graph with exponent 2 and $n>4$, the minimal number of edges is $2n$.

Keywords: primitive graph, primitive matrix, exponent, regular graph.

UDC: 519.17

DOI: 10.17223/2226308X/10/51



© Steklov Math. Inst. of RAS, 2026