RUS  ENG
Full version
JOURNALS // Prikladnaya Diskretnaya Matematika. Supplement // Archive

Prikl. Diskr. Mat. Suppl., 2017 Issue 10, Pages 38–40 (Mi pdma336)

This article is cited in 3 papers

Discrete Functions

Properties of coordinate functions for a class of permutations on $\mathbb F_2^n$

L. A. Karpova, I. A. Pankratova

Tomsk State University, Tomsk

Abstract: In the class $\mathcal F_n$ of permutations on $\mathbb F_2^n$ with coordinate functions depending on all variables, we consider the subclass $\mathcal K_n$, where each permutation is obtained from the identity by $n$ independent transpositions. For permutations in $\mathcal K_n$, some cryptographic properties of coordinate functions $f_i$ are given, namely, $\operatorname{deg}f_i=n-1$, non-linearity $N_{f_i}=2$, correlation immunity order $\operatorname{cor}(f_i)=0$, algebraic immunity $\operatorname{AI}(f_i)=2$. The cardinalities $|\mathcal K_n|$ for $n=3,\dots,6$ has been presented.

Keywords: vector Boolean functions, invertible functions, non-linearity, correlation immunity, algebraic immunity.

UDC: 519.7

DOI: 10.17223/2226308X/10/15



© Steklov Math. Inst. of RAS, 2026