RUS  ENG
Full version
JOURNALS // Prikladnaya Diskretnaya Matematika. Supplement // Archive

Prikl. Diskr. Mat. Suppl., 2017 Issue 10, Pages 33–34 (Mi pdma313)

Discrete Functions

On connection between affine splitting of a Boolean function and its algebraic, combinatorial and cryptographic properties

A. A. Babueva

Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics, Moscow

Abstract: In this paper, the following results are obtained: 1) for an affine splitting of a Boolean function – an upper bound of algebraic degree; 2) for a dual bent function – some sufficient conditions to be affine splitting, and 3) for any Boolean function with a non-trivial subspace of the linear structures – an upper bound of nonlinearity. Besides, the following assertions are proved: 1) affine splitting is an invariant of complete affine group; 2) if a bent function is normal or weakly normal, then its dual function is normal or weakly normal respectively; 3) the coefficients of the incomplete Walsh–Hadamard transformation of a bent function and of its dual function are the same for zero values of variables; 4) a relation connecting the squares of the Walsh–Hadamard coefficients of a function over cosets of a subspace with the squares of the coefficients of the incomplete Walsh–Hadamard transformation of this function.

Keywords: Boolean functions, bent functions, affine splitting.

UDC: 519.7

DOI: 10.17223/2226308X/10/12



© Steklov Math. Inst. of RAS, 2026