RUS  ENG
Full version
JOURNALS // Prikladnaya Diskretnaya Matematika. Supplement // Archive

Prikl. Diskr. Mat. Suppl., 2015 Issue 8, Pages 35–37 (Mi pdma233)

This article is cited in 6 papers

Discrete Functions

On the invertibility of vector Boolean functions

I. A. Pankratova

Tomsk State University, Tomsk

Abstract: The class $\mathcal F_{n,m,k}$ of invertible vector Boolean functions $F\colon\mathbb F_2^n\to\mathbb F_2^m$ with coordinate functions depending on the given number $k$ variables is considered. It is proved that 1) these functions do not exist for any $n=m$ and $k=2$; 2) the functions of the class $\mathcal F_{n,n,n-1}$ can (can not) be built from affine coordinate functions for even (odd) $n$; 3) if $\mathcal F_{n,m,k}\neq\varnothing$ then $\mathcal F_{n+1,m+1,k}\neq\varnothing$.

Keywords: vector Boolean functions, invertible function.

UDC: 519.7

DOI: 10.17223/2226308X/8/14



© Steklov Math. Inst. of RAS, 2026