RUS  ENG
Full version
JOURNALS // Prikladnaya Diskretnaya Matematika // Archive

Prikl. Diskr. Mat., 2025 Number 69, Pages 37–54 (Mi pdm879)

Theoretical Backgrounds of Applied Discrete Mathematics

On cryptanalytic invertibility of discrete functions

I. A. Pankratova, A. D. Sorokoumova

Tomsk State University, Tomsk, Russia

Abstract: The function $g(x_1,\ldots,x_n)$ is invertible with respect to the variable $x_k$ of type $K_1\ldots K_n$, where $k\in\{1,\ldots,n\}$, $K_i\in\{\exists,\forall\}$ and $K_k=\forall$, if there exists a recovery function $f$ such that the invertibility condition is true:
\begin{equation*} K_1x_1\ldots K_nx_n \big(f(g(x_1,\ldots,x_n))=x_k\big). \end{equation*}
Criteria for cryptanalytic invertibility of functions $g:D_1\times D_2\times D_3\to D$ are proven: 1) a function $g$ is invertible with respect to the variable $x_1$ of the type $\forall\forall\exists$ iff there is a mapping $\varphi:D_1\times D_2\to D_3$ such that the following condition is satisfied:
$$\forall a,c\in D_1 \forall b,d\in D_2 \big(a\neq c\ \Rightarrow\ g(a,b,\varphi(a,b))\neq g(c,d,\varphi(c,d))\big);$$
2) a function $g$ is invertible with respect to the variable $x_1$ of the type $\forall\exists\forall$ iff there is a mapping $\varphi:D_1\to D_2$ such that the following condition is satisfied:
$$\forall a,c\in D_1 \forall b,d\in D_3 \big(a\neq c\ \Rightarrow\ g(a,\varphi(a),b)\neq g(c,\varphi(c),d)\big);$$
3) a function $g$ is invertible with respect to the variable $x_3$ of the type $\forall\exists\forall$ iff there is a mapping $\varphi:D_1\to D_2$ such that the following condition is satisfied:
$$\forall a,c\in D_1 \forall b,d\in D_3 \big(b\neq d\ \Rightarrow\ g(a,\varphi(a),b)\neq g(c,\varphi(c),d)\big);$$
4) a function $g$ is invertible with respect to the variable $x_2$ of the type $\exists\forall\forall$ iff there is $a\in D_1$ such that the following condition is satisfied ($G^{(a,b)}=\{g(a,b,x_3):x_3\in D_3\}$):
$$\forall b,d\in D_2 \big(b\neq d\ \Rightarrow\ G^{(a,b)}\cap G^{(a,d)}=\emptyset\big);$$
5) a function $g$ is invertible with respect to the variable $x_2$ of the type $\exists\forall\exists$ iff there are $a\in D_1$ and a mapping $\varphi:D_2\to D_3$ such that the following condition is satisfied:
$$\forall b,d\in D_2 \big(b\neq d\ \Rightarrow\ g(a,b,\varphi(b))\neq g(a,d,\varphi(d))\big).$$
Algorithms for constructing a recovery function and generating invertible functions are formulated too.

Keywords: cryptanalytic invertibility, invertibility criterion, recovery function.

UDC: 519.7

DOI: 10.17223/20710410/69/3



© Steklov Math. Inst. of RAS, 2026