RUS  ENG
Full version
JOURNALS // Prikladnaya Diskretnaya Matematika // Archive

Prikl. Diskr. Mat., 2021 Number 54, Pages 99–108 (Mi pdm755)

Applied Graph Theory

The palette index of Sierpiński triangle graphs and Sierpiński graphs

A. Ghazaryan

Yerevan State University, Yerevan, Armenia

Abstract: The palette of a vertex $v$ of a graph $G$ in a proper edge coloring is the set of colors assigned to the edges which are incident to $v$. The palette index of $G$ is the minimum number of palettes occurring among all proper edge colorings of $G$. In this paper, we consider the palette index of Sierpiński graphs $S_p^n$ and Sierpiński triangle graphs $\widehat{S}_3^n$. In particular, we determine the exact value of the palette index of Sierpiński triangle graphs. We also determine the palette index of Sierpiński graphs $S_p^n$ where $p$ is even, $p=3$, or $n=2$ and $p=4l+3$.

Keywords: palette index, Sierpiński triangle graph, Sierpiński graph.

UDC: 519.174.7

Language: English

DOI: 10.17223/20710410/54/5



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026