RUS  ENG
Full version
JOURNALS // Prikladnaya Diskretnaya Matematika // Archive

Prikl. Diskr. Mat., 2016 Number 1(31), Pages 57–61 (Mi pdm531)

This article is cited in 4 papers

Theoretical Foundations of Applied Discrete Mathematics

On the period length of vector sequences generated by polynomials modulo prime powers

N. G. Parvatov

National Research Tomsk State University, Tomsk, Russia

Abstract: We give an upper bound on the period length for vector sequences defined recursively by systems of multivariate polynomials with coefficients in the ring of integers modulo a prime power.

Keywords: recurrence sequences, vector sequences, period length, polynomial functions, polynomial permutations, finite rings.

UDC: 511.176

Language: English

DOI: 10.17223/20710410/31/5



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026