RUS  ENG
Full version
JOURNALS // Prikladnaya Diskretnaya Matematika // Archive

Prikl. Diskr. Mat., 2015 Number 3(29), Pages 63–73 (Mi pdm519)

Applied Graph Theory

Number of inaccessible states in finite dynamic systems of binary vectors associated with palms orientations

A. V. Zharkova

Saratov State University, Saratov, Russia

Abstract: Finite dynamic systems of binary vectors associated with palms orientations are considered. A palm is a tree which is a union of paths having a common end vertex and all these paths, except perhaps one, have the length 1. States of a dynamic system ($P_{s+c}$, $\gamma$), $s>0$, $c>1$, are all possible orientations of a palm with trunk length $s$ and leafs number $c$, and evolutionary function $\gamma$ transforms the given palm orientations by reversing all arcs that enter into sinks. The following formula for the number of inaccessible states in the considered dynamic systems is proved: $2^{s+c}-2^s-2^{s-3}+\Omega(-1)-2\Omega(1)+\Omega(3)$, where $\Omega(x)=\sum_{i = 1}^{\left[(s - x)/4\right]}(-1)^{i+1}\cdot2^{s-x-4i}\cdot C^i_{s-x-3i}$. As a corollary, the number of accessible states equals $2^s+2^{s-3}-\Omega(-1)+2\Omega(1)-\Omega(3)$. The corresponding statistical tables for systems with different parameters $s$ and $c$ are given.

Keywords: finite dynamic system, inaccessible state, palm, starlike tree.

UDC: 519.1

DOI: 10.17223/20710410/29/5



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026