RUS  ENG
Full version
JOURNALS // Prikladnaya Diskretnaya Matematika // Archive

Prikl. Diskr. Mat., 2015 Number 1(27), Pages 27–36 (Mi pdm498)

Theoretical Foundations of Applied Discrete Mathematics

Ergodic dynamical systems over the cartesian power of the ring of $2$-adic integers

V. V. Sopin

Lomonosov Moscow State University, Moscow, Russia

Abstract: It is proved that, for any $1$-lipschitz ergodic map $F\colon\mathbb Z^k_2\mapsto\mathbb Z^k_2$, where $k>1$ and $k\in\mathbb N,$ there are $1$-lipschitz ergodic map $G\colon\mathbb Z_2\mapsto\mathbb Z_2$ and two bijections $H_k$, $T_{k,P}$ such that $G=H_k\circ T_{k,P}\circ F\circ H^{-1}_k$ and $F=H^{-1}_k\circ T_{k,P^{-1}}\circ G\circ H_k$.

Keywords: ergodic, $1$-lipschitz measure-preserving $p$-adic functions, $p$-adic analysis, cartesian product, T-functions.

UDC: 512.625.5



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026