RUS  ENG
Full version
JOURNALS // Prikladnaya Diskretnaya Matematika // Archive

Prikl. Diskr. Mat., 2014 Number 4(26), Pages 72–77 (Mi pdm481)

Applied coding and data compression theory

On the covering radius of the linear codes generated by the affine geometries over $\mathrm{GF}(4)$

M. E. Kovalenko

Lomonosov Moscow State University, Moscow, Russia

Abstract: The covering radius for a code is defined to be a maximal distance between a space vector and the code. It is shown that the covering radius for a linear code generated by the affine geometry over $\mathrm{GF}(4)$ equals 4.

Keywords: linear codes, finite affine geometries, covering radius.

UDC: 519.72



© Steklov Math. Inst. of RAS, 2026