RUS
ENG
Full version
JOURNALS
// Prikladnaya Diskretnaya Matematika
// Archive
Prikl. Diskr. Mat.,
2014
Number 4(26),
Pages
72–77
(Mi pdm481)
Applied coding and data compression theory
On the covering radius of the linear codes generated by the affine geometries over
$\mathrm{GF}(4)$
M. E. Kovalenko
Lomonosov Moscow State University, Moscow, Russia
Abstract:
The covering radius for a code is defined to be a maximal distance between a space vector and the code. It is shown that the covering radius for a linear code generated by the affine geometry over
$\mathrm{GF}(4)$
equals 4.
Keywords:
linear codes, finite affine geometries, covering radius.
UDC:
519.72
Fulltext:
PDF file (603 kB)
References
©
Steklov Math. Inst. of RAS
, 2026