Abstract:
For undirected circulant networks, the problem of the maximal reachable number of nodes under given dimension and diameter of a graph is considered. In 1994, F. P. Muga proved the theorem that this number is odd for any dimension and any diameter of a circulant graph. Later, R. R. Lewis has presented a counterexample of four-dimensional circulant. In the present paper, a mistake in the proof of this theorem is pointed. Based on the new results, the early presented table of the maximal reachable orders of four-dimensional circulants is corrected.
Keywords:undirected circulant graphs, diameter, maximum order of a graph.