RUS  ENG
Full version
JOURNALS // Prikladnaya Diskretnaya Matematika // Archive

Prikl. Diskr. Mat., 2014 Number 1(23), Pages 73–76 (Mi pdm450)

This article is cited in 1 paper

Applied Coding Theory

On ranks of subsets in the space of binary vectors admitting an embedding of a Steiner system $S(2,4,v)$

Y. V. Tarannikov

M. V. Lomonosov Moscow State University, Moscow, Russia

Abstract: A bound for the rank of a subset $X$ in the vector space $\mathbb F_2^n$ is obtained via the covering radius of the code lying in the subspace of linear dependencies of vectors in $X$. Also, an upper bound for the covering radius of a code generated by the incidence matrix of a Steiner system $S(2,4,v)$ is obtained. Precice and asymptotic bounds for the rank of a subset $X$ in the vector space $\mathbb F_2^n$ admitting an embedding of a Steiner system $S(2,4,v)$ are obtained too.

Keywords: rank, affine rank, bounds, linear subspace, linear code, covering radius, Steiner system, Boolean functions, spectrum support.

UDC: 519.72



© Steklov Math. Inst. of RAS, 2026