RUS  ENG
Full version
JOURNALS // Prikladnaya Diskretnaya Matematika // Archive

Prikl. Diskr. Mat., 2013 Number 4(22), Pages 16–21 (Mi pdm433)

This article is cited in 2 papers

Theoretical Foundations of Applied Discrete Mathematics

Permutation polynomials over residue class rings

A. V. Karpov

Tomsk State University, Tomsk, Russia

Abstract: Problems of finding inverse for a permutation polynomial over the ring $\mathbb Z_{p^k}$ for prime $p$ and any $k>1$ are studied. Necessary and sufficient conditions for two permutation polynomials to be inverse polynomials modulo prime power are found. Given a known inverse polynomial modulo $p^2$, a formula for inverse polynomial modulo $p^k$ is pointed. Given a pair of inverse polynomials modulo $p^k$, a method for constructing other such pairs is proposed.

Keywords: permutation polynomials, residue class rings, polynomial permutations.

UDC: 512.714



© Steklov Math. Inst. of RAS, 2026