RUS  ENG
Full version
JOURNALS // Proceedings of National Academy of Sciences of Armenia, Mechanics // Archive

Proceedings of National Academy of Sciences of Armenia, Mechanics, 2018, Volume 71, Issue 2, Pages 69–82 (Mi pasam11)

Applied model of elastic thin plates made from micropolar material with constrained rotation and application of the finite element method

К. Жамакочян, С. Саркисян

Institute of Mechanics, National Academy of Sciences of Armenia

Abstract: In the present paper boundary value problems of three-dimensional micropolar theory of elasticity with constrained rotation are considered in thin region of the plate. On the basis of the previously developed hypotheses an applied theory of micropolar thin plates with constrained rotation is constructed, where transverse shear strains are taken into account. The energy balance equation is obtained and the corresponding variation functional is constructed. The finite element method is developed for the boundary problems (statics and natural oscillation) of micropolar plates with constrained rotation. On the basis of the analysis of the corresponding numerical results main properties of the micropolarity of the material are established.

Keywords: micropolar elasticity, constrained rotation, thin plate, applied theory, finite element method.



© Steklov Math. Inst. of RAS, 2026