RUS  ENG
Full version
JOURNALS // Problemy Analiza — Issues of Analysis // Archive

Probl. Anal. Issues Anal., 2025 Volume 14(32), Issue 1, Pages 119–129 (Mi pa419)

New norm inequalities for commutators of Hilbert space operators

B. Moosavia, M. Sh. Hosseinib

a Department of Mathematics, Safadasht Branch, Islamic Azad University, Tehran, Iran
b Department of Mathematics, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran

Abstract: New norm inequalities for commutators of Hilbert space operators are given. Among other inequalities, it is shown that if $A,$ $ B$ $\in \mathbb{B(H)}$ and there exists a real number $z_{0}$, such that $ \Vert A-z_{0}I\Vert=D_{A} $, then
\begin{eqnarray*} \Vert AB \pm BA^*\Vert \leq 2 D_{A} \Vert B \Vert, \end{eqnarray*}
where ${{D}_{A}}=\underset{\lambda \in \mathbb{C}}{\mathop{\inf }} \left\| A-\lambda I \right\| $. In particular, under some conditions, we prove that
\begin{eqnarray*} \Vert AB\Vert \leq D_{A} \Vert B \Vert, \end{eqnarray*}
which is an improvement of submultiplicative norm inequality. Also, we prove several numerical radius inequalities for products of two Hilbert space operators.

Keywords: bounded linear operator, Hilbert space, norm inequality, numerical radius.

UDC: 517.98

MSC: Primary 47A12; Secondary 47A30, 47A63

Received: 12.08.2024
Revised: 08.01.2025
Accepted: 19.12.2024

Language: English

DOI: 10.15393/j3.art.2025.16510



© Steklov Math. Inst. of RAS, 2026