RUS  ENG
Full version
JOURNALS // Problemy Analiza — Issues of Analysis // Archive

Probl. Anal. Issues Anal., 2024 Volume 13(31), Issue 1, Pages 124–131 (Mi pa395)

On complete Riesz–Fischer sequences in a Hilbert space

E. Zikkos

Department of Mathematics, Khalifa University, Abu Dhabi, United Arab Emirates

Abstract: We prove that if $\{f_n\}_{n=1}^{\infty}$ is a complete Riesz–Fischer sequence in a separable Hilbert space $H$, then
$$ T:=\{f\in H\colon \sum |\langle f, f_n\rangle |^2<\infty\} $$
is closed in $H$ if and only if $\{f_n\}_{n=1}^{\infty}$ has a biorthogonal Riesz sequence. If the latter is also complete in $H$, then $\{f_n\}_{n=1}^{\infty}$ is a Riesz basis for $H$.

Keywords: Riesz–Fischer sequences, Bessel sequences, Riesz sequences, Riesz bases, biorthogonal sequences, completeness.

UDC: 517.982.22, 517.521

MSC: 42C15, 42C99

Received: 31.08.2023
Revised: 22.12.2023
Accepted: 23.12.2023

Language: English

DOI: 10.15393/j3.art.2024.14630



© Steklov Math. Inst. of RAS, 2026