RUS  ENG
Full version
JOURNALS // Problemy Analiza — Issues of Analysis // Archive

Probl. Anal. Issues Anal., 2019 Volume 8(26), Issue 3, Pages 147–151 (Mi pa280)

On the compactness of one class of quasiconformal mappings

E. A. Shcherbakov, I. A. Avdeyev

Kuban State University, 149 Stavropolskaya str., Krasnodar 350040, Russia

Abstract: We consider an elliptic system in the disk ${|z|<1}$ for the so-called $p$-analytic functions. This system admits degeneration at the boundary of the disk. We prove compactness of the family of $K$-quasiconformal mappings, which are the solutions of the uniformly elliptic systems approximating the degenerating one.

Keywords: quasi-conformal mappings, sobolev spaces, elliptic systems, embedding theorems, topological mappings, Dirichlet integral, Douglas integral, harmonic functions.

UDC: 517.3

MSC: 30C70, 30C75

Received: 09.07.2019
Revised: 30.10.2019
Accepted: 29.10.2019

Language: English

DOI: 10.15393/j3.art.2019.6670



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026