Optics and Spectroscopy, 2024 Volume 132, Issue 10,Pages 1019–1030(Mi os1470)
Spectroscopy of condensed matter
Determination of a wide range of the spectrum of eigenfrequencies of the band of intermolecular vibrations of water 184 cm$^{-1}$; some properties of these frequencies
Abstract:
Based on the previously developed method for determining the eigenfrequencies of intermolecular vibrations of liquid water using the previously obtained set of 65 Raman spectra, a set of eigenfrequencies for the hydrogen bond stretching mode was obtained, and the range and main properties of the eigenfrequencies were determined. For the given set were obtained all possible eigenfrequency values, located in a wide band of 169–209 cm$^{-1}$, and some properties and structural features of the main characteristics in this band were determined.. The developed algorithm for dividing a two-dimensional distribution of a compact array of points into groups of points adjacent to the straight lines approximating them within a narrow band is presented. The analysis of the ordered by magnitude natural frequencies and point densities per unit frequency interval in the group and the ordered by the band width of the group of point densities per unit frequency interval was carried out. These characteristics were compared with the same characteristics of three sets of randomly scattered points with the same statistical characteristics as the spectral points of water. Distinctive features of water were revealed. It has been suggested that the reason for the discovered features is the existence of some structures in the water.
Keywords:intermolecular vibrations of water, hydrogen bond, band of eigenfrequencies, stretching mode, points on a plane, approximating line, point density, point extraction algorithm.