RUS  ENG
Full version
JOURNALS // Optics and Spectroscopy // Archive

Optics and Spectroscopy, 2023 Volume 131, Issue 7, Pages 958–964 (Mi os1401)

Optical materials

Optical spectra of a photonic crystal structure with graphene layers

S. V. Eliseeva, D. I. Sementsov

Ulyanovsk State University, Ulyanovsk, Russia

Abstract: The transformation of the graphene-containing optical spectra photonic-crystal structure with a change in the chemical potential $(\mu)$ of graphene is studied. In the period of the structure, one layer is a graphene-containing periodic medium (SiO$_2$/Gr)$^n$, and the second layer is assumed to be made of pure silicon. In the case of unexcited graphene ($\mu$ = 0), the absorption in the structure exceeds the reflection and transmission for frequencies outside the photonic band gaps. Within these zones, most of the incident radiation is reflected, and there is no transmission at all. As $\mu$ increases outside the band gaps, the absorption decreases in the low-frequency region, and the transmission increases the stronger, the greater $\mu$. In a structure with an inversion defect inside the band gaps, either suppression or significant rearrangement of the defect mode takes place.

Keywords: graphene, effective medium, photonic crystal structure, transfer matrices, reflection, transmission and absorption spectra, photonic band gap, defect mode.

Received: 12.02.2022
Revised: 19.11.2022
Accepted: 25.06.2023

DOI: 10.21883/OS.2023.07.56131.3260-23



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026