RUS  ENG
Full version
JOURNALS // Russian Journal of Nonlinear Dynamics // Archive

Nelin. Dinam., 2017 Volume 13, Number 2, Pages 207–226 (Mi nd561)

This article is cited in 1 paper

Original papers

On stability of motion of the Maxwell pendulum

A. P. Markeevab

a Moscow Institute of Physics and Technology (State University), Institutskiy per. 9, Dolgoprudny, Moscow Region, 141701, Russia
b A.Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr. Vernadskogo 101-1, Moscow, 119526, Russia

Abstract: We investigate the stability of motion of the Maxwell pendulum in a uniform gravity field [1, 2]. The threads on which the axis and the disk of the pendulum have been suspended are assumed to be weightless and inextensible, and the characteristic linear size of the disk is assumed to be small compared to the lengths of threads. In the unperturbed motion the angle the threads make with the vertical is zero, and the disk moves along the vertical and rotates around its horizontal axis. The nonlinear problem of stability of this motion is solved with respect to small deviations of the threads from the vertical. By means of canonical transformations and the Poincaré section surface method, the problem is reduced to the study of stability of the fixed point of the area-preserving mapping of the plane into itself. In the space of dimensionless parameters of the problem, regions of stability and instability are found.

Keywords: stability, map, canonical transformations.

UDC: 531.36, 531.53

MSC: 70H05, 70H15, 70E50

Received: 23.01.2017
Accepted: 10.04.2017

DOI: 10.20537/nd1702005



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026