RUS  ENG
Full version
JOURNALS // Russian Journal of Nonlinear Dynamics // Archive

Nelin. Dinam., 2013 Volume 9, Number 2, Pages 295–307 (Mi nd391)

This article is cited in 4 papers

Splitting bifurcation of stochastic cycles in the FitzHugh–Nagumo model

Irina A. Bashkirtseva, Lev B. Ryashko, Evdokia S. Slepukhina

Ural Federal University, Ekaterinburg, Russia

Abstract: We study the stochastic dynamics of FitzHugh–Nagumo model in the zone of limit cycles. For weak noise, random trajectories are concentrated in a small neighborhood of the initial deterministic unperturbed orbit of the limit cycle. As noise increases, in the zone of Canard cycles of the FitzHugh–Nagumo model, the bundle of random trajectories begins to split into two parts. This phenomenon is investigated using the density distribution of random trajectories. It is shown that the threshold noise intensity corresponding to the splitting bifurcation depends essentially on the degree of the stochastic sensitivity of the cycle. Using the stochastic sensitivity functions technique, a critical value corresponding to the supersensitive cycle is found and comparative parametric analysis of the effect of the stochastic cycle splitting in the vicinity of the critical value is carried out.

Keywords: FitzHugh–Nagumo model, stochastic sensitivity, cycles, splitting bifurcation.

UDC: 531.36

MSC: 37H20, 60H10

Received: 18.02.2013
Revised: 15.05.2013



© Steklov Math. Inst. of RAS, 2026