RUS  ENG
Full version
JOURNALS // Russian Journal of Nonlinear Dynamics // Archive

Nelin. Dinam., 2012 Volume 8, Number 3, Pages 523–540 (Mi nd341)

On quadratic integral Poincare–Zhukovsky's equations

Vladimir Yu. Ol'shanskii

Institute of Precision Mechanics and Control, Russian Academy of Scienses Rabotchaya 24, Saratov, 410028, Russia

Abstract: For Poincaré–Zhukovsky's equations with non-diagonal matrices in the Hamiltonian, we obtain conditions for existence of the quadratic integral $(\mathbf{YS}, \mathbf{K}) = \mathrm{const}$ and the explisit form of it. It is shown that if the integral exists, then the equations reduce to the Schottky's case.

Keywords: Poincaré–Zhukovsky's equations, quadratic integral, non-diagonal matrices, Schottky's case.

UDC: 531.01

MSC: 70E40, 37J35

Received: 03.02.2012
Revised: 14.03.2012



© Steklov Math. Inst. of RAS, 2026