RUS  ENG
Full version
JOURNALS // Nanosystems: Physics, Chemistry, Mathematics // Archive

Nanosystems: Physics, Chemistry, Mathematics, 2018 Volume 9, Issue 4, Pages 544–548 (Mi nano342)

CHEMISTRY AND MATERIAL SCIENCE

Effect of high pressures and high temperatures on the structure of nanostructured titanium monoxide

A. A. Valeevaab, M. G. Kostenkob, A. Pfitznerc, A. A. Rempelba

a Ural Federal University named after the first President of Russia B. N. Eltsin, 91, Mira st., Ekaterinburg, 620002, Russia
b Institute of Solid State Chemistry UB RAS, 91, Pervomaiskaya st., Ekaterinburg, 620990, Russia
c Institute of Inorganic Chemistry, Regensburg University, Regensburg, Germany

Abstract: The structure of nanostructured titanium monoxide TiO$_{0.98}$ containing structural vacancies in two sublattices simultaneously has been modified via thermobaric annealing. Analysis of the experimental data on thermobaric synthesis of nanostructured TiO$_{0.98}$ with cubic $B1$ type structure at temperatures $573$$2273$ K and pressure $6$ GPa revealed that a transition from the cubic $B1$ (sp. gr. $Fm\overline{3}m$) phase to the trigonal Ti$_2$O$_3$ (sp. gr. $R\overline{3}c$) phase takes place in the nanostructured monoxide as a result of high pressures and high temperatures. The first-principle calculations of the cohesive energy and electronic structure show that the trigonal phase with space group $R\overline{3}c$ is energetically favorable compared to the cubic phase of the same composition TiO$_{3/2}$ and the orthorhombic ordered Ti$_2$O$_3$ (sp. gr. $Immm$) phase.

Keywords: nanostructured titanium monoxide, structural vacancy, nonstoichiometry, high pressure, high temperature, phase transition, electronic structure.

PACS: 61.72.Dd, 61.72.Bb, 64.70.Nd, 71.20.Ps

Received: 25.05.2018
Revised: 12.07.2018

Language: English

DOI: 10.17586/2220-8054-2018-9-4-544-548



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026