RUS  ENG
Full version
JOURNALS // Nanosystems: Physics, Chemistry, Mathematics // Archive

Nanosystems: Physics, Chemistry, Mathematics, 2025 Volume 16, Issue 6, Pages 737–748 (Mi nano1414)

MATHEMATICS

On the existence of the maximum number of isolated eigenvalues for a lattice Schrödinger operator

S. N. Lakaeva, D. A. Latipovab, M. O. Akhmadovaa

a Samarkand State University, 140104, Samarkand, Uzbekistan
b Samarkand State Pedagogical Institute, 140104, Samarkand, Uzbekistan

Abstract: This paper presents a detailed spectral analysis of the discrete Schrödinger operator $H_{\gamma\lambda\mu}(K)$, which describes a system of two identical bosons on a two-dimensional lattice, $\mathbb{Z}^2$. The operator’s family is parameterized by the quasi-momentum $K \in \mathbb{T}^2$ and real interaction strengths: $\gamma$ for on-site, $\lambda$ for nearestneighbor, and $\mu$ for next-nearest-neighbor interactions. A key finding of our study is that, under specific conditions on the interaction parameters, the operator $H_{\gamma\lambda\mu}(K)$ consistently possesses a total of seven eigenvalues that lie either below the bottom or above the top of its essential spectrum, over all $K \in \mathbb{T}^2$.

Keywords: two-particle system, discrete Schrödinger operator, essential spectrum, bound states, Fredholm determinant.

Received: 13.10.2025
Revised: 09.11.2025
Accepted: 13.11.2025

Language: English

DOI: 10.17586/2220-8054-2025-16-6-737-748



© Steklov Math. Inst. of RAS, 2026