RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1976 Volume 20, Issue 2, Pages 203–205 (Mi mzm9982)

This article is cited in 1 paper

Exactness of a nontrivial estimate in a cyclic inequality

E. K. Godunova, V. I. Levin

Moscow State Pedagogical Institute

Abstract: It is proved that the inequality [1]
$$ \frac1n\sum_{i=1}^n\frac{\nu_1a_{i+1}+\nu_2a_{i+2}+\nu_3a_{i+3}}{\delta_2a_{i+2}+\delta_3a_{i+3}}\geqslant\psi(0), $$
where $n\geqslant3$, $\nu_1, \nu_2, \nu_3\geqslant0$, $\delta_2, \delta_3>0$, and $\psi(t)$ is the convex lower support of the function $\widetilde{\psi}(t)$ defined in [1], is exact.

UDC: 517

Received: 16.12.1974


 English version:
Mathematical Notes, 1976, 20:2, 673–675

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026