RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1975 Volume 18, Issue 4, Pages 541–552 (Mi mzm9968)

This article is cited in 7 papers

Lower bounds of linear forms of values of $G$ functions

A. I. Galochkin

M. V. Lomonosov Moscow State University

Abstract: Lower bounds are obtained for linear forms of values of Siegel's $G$ functions. In particular, it is found that if $\alpha_1,\dots,\alpha_m$ are pairwise distinct nonzero rational numbers, then for any positive $\varepsilon$ and a natural $q>q_0(\varepsilon,\alpha_1,\dots,\alpha_m)$ we have for any nonzero set $(x_0,x_1,\dots,x_m)$ of integers the inequality
$$ |x_0+x_1\ln(1+\alpha_1q^{-1})+\dots+x_m\ln(1+\alpha_mq^{-1})|>q^{-\lambda}(h_1\dots h_m)^{-1-\varepsilon}, $$
where $h_i=\max(1,|x_i|)$, and $\lambda=\lambda(\varepsilon,\alpha_1,\dots,\alpha_m)$.

UDC: 511

Received: 14.10.1974


 English version:
Mathematical Notes, 1975, 18:4, 911–917

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026