RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1975 Volume 18, Issue 4, Pages 489–498 (Mi mzm9963)

This article is cited in 19 papers

Certain inequalities in various metrics for trigonometric polynomials and their derivatives

V. I. Ivanov

V. A. Steklov Mathematics Institute, Academy of Sciences of the USSR

Abstract: We establish for $0<p<1$ the analog of the Bernstein–Zygmund inequality for the derivative of a trigonometric polynomial
$$ \int_{-\pi}^\pi|t_n'(x)|^pdx\leqslant c_pn^p\int_{-\pi}^\pi|t_n(x)|^pdx. $$
We prove weighted inequalities, exact in the sense of order, for trigonometric polynomials and their derivatives in various integral metrics with exponents $0<p$, $q\leqslant\infty$.

UDC: 517.51

Received: 20.12.1974


 English version:
Mathematical Notes, 1975, 18:4, 880–885

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026