RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1975 Volume 18, Issue 4, Pages 473–488 (Mi mzm9962)

This article is cited in 6 papers

Metric projection onto finite-dimensional subspaces of $\mathrm{C}$ and $\mathrm{L}$

V. I. Berdyshev

Institute of Mathematics and Mechanics of the General Science Center, Academy of Sciences of the USSR

Abstract: In the space $\mathrm{C(Q)}$ of real functions that are continuous on the compact set $\mathrm{Q}$, a finite-dimensional subspace $\mathrm{P}$ will have a uniformly continuous metric projection if and only if $\mathrm{Q}$ is a finite sum of compact sets $\mathrm{Q_i}$, and either $\mathrm{P}$ is on each $\mathrm{Q_i}$ a one-dimensional Chebyshev space, or $\mathrm{x(t)\equiv0\mathrm}$ for any $\mathrm{x}$ belonging to $\mathrm{P}$. The metric projection onto any finite-dimensional subspace of the space $\mathrm{L[a, b]}$ of real integrable functions is not uniformly continuous.

UDC: 517.5

Received: 30.12.1974


 English version:
Mathematical Notes, 1975, 18:4, 871–879

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026