RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1973 Volume 14, Issue 5, Pages 677–685 (Mi mzm9952)

Boundary-value problem of Ñarleman with a noninvolutory shift

A. V. Aizenshtat, V. A. Chernetskii

Odessa State University

Abstract: By a conformal pasting method we reduce the Carleman boundary-value problem
$$ \Phi^+[\alpha(t)]=G(t)\Phi^+(t)+g(t) $$
with a nonconvergent shift $\alpha(t)$ ($\alpha[\alpha(t)]\not\equiv t$) to the problem of finding all analytic functions which are simultaneously the solutions of two problems on an open contour: the Riemann problem and the Hasemann problem. Using this reduction, we obtain a theorem concerning the solvability of the stated problem.

UDC: 517

Received: 19.02.1973


 English version:
Mathematical Notes, 1973, 14:5, 948–952

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026