RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1972 Volume 12, Issue 6, Pages 665–670 (Mi mzm9931)

A note on a theorem of Sunouchi

A. V. Efimov

Moscow Institute of Electronic Technology

Abstract: We show that for negative $\alpha$ Sunouchi's formula
\begin{gather*} H_n(f,\alpha,\beta,x)=\frac1{A^\beta_n}\sum_{k=0}^nA_{n-k}^{\beta-1}|f(x)-\sigma_k^\alpha(f,x)|,\\ \alpha>-\frac12,\quad\beta>\frac12, \end{gather*}
becomes false, where $\sigma_k^\alpha(f,x)$ is the $(C,\alpha)$ mean of the Fourier series for the function $f(x)\in\mathrm{Lip}\,\gamma$, $0<\gamma<1$. A bound is given for $H_n(f,\alpha,\beta,x)$ for all $\alpha>-1$, $\beta>-1$, which for $\alpha+\beta>0$, $\alpha\geqslant0$, $\beta\geqslant0$, coincides with the Sunouchi bound. The proof is by a method different from that of Sunouchi.

UDC: 517.5

Received: 05.01.1972


 English version:
Mathematical Notes, 1972, 12:6, 839–842

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026