RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1972 Volume 12, Issue 4, Pages 403–412 (Mi mzm9898)

Asymptotic bounds for the eigenvalues and eigenvectors of a perturbed linear non-self-conjugate operator

Yu. Muratov

Tadzhik State University

Abstract: We obtain asymptotic bounds for the perturbed eigenvalues and eigenvectors of a perturbed linear bounded operator $A(\varepsilon)$, in a Hilbert space under the assumption that $A(\varepsilon)$ is holomorphic at the point $\varepsilon=\varepsilon_0$ and the eigenvalue $\lambda_0=\lambda(\varepsilon_0)$ of the operator $A(\varepsilon_0)$ is isolated and of finite multiplicity. We study certain cases of high degeneracy in the limiting problem, i.e., the case when there are generalized associated vectors.

UDC: 517.4

Received: 01.04.1970


 English version:
Mathematical Notes, 1972, 12:4, 673–679

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026