RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2000 Volume 68, Issue 5, Pages 677–691 (Mi mzm989)

This article is cited in 6 papers

On the Spectrum of Degenerate Operator Equations

V. V. Kornienko

A. Navoi Samarkand State University

Abstract: We study the distribution in the complex plane $\mathbb C$ of the spectrum of the operator $L=L(\alpha,a,A)$, $\alpha\in\mathbb R$, $a\in\mathbb C$, generated by the closure in $H=\mathscr L_2(0,b)\otimes\mathfrak H$ of the operation $t^\alpha aD_t^2+A$ originally defined on smooth functions $u(t)\colon[0,b]\to\mathfrak H$ with values in a Hilbert space $\mathfrak H$ satisfying the Dirichlet conditions $u(0)=u(b)=0$. Here $D_t\equiv d/dt$ and $A$ is a model operator acting in $\mathfrak H$. Criterial conditions on the parameter $\alpha$ for the eigenfunctions of the operator $L\colon H\to H$ to form a complete and minimal system as well as a Riesz basis in the Hilbert space $H$ are given.

UDC: 517.95

Received: 06.03.1997
Revised: 30.11.1999

DOI: 10.4213/mzm989


 English version:
Mathematical Notes, 2000, 68:5, 576–587

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026