RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1972 Volume 11, Issue 5, Pages 517–526 (Mi mzm9818)

This article is cited in 1 paper

Quadrature processes for integrals of Cauchy type

D. G. Sanikidze

Computer Center, Academy of Sciences of the Georgian SSR

Abstract: We study questions relating to convergence of the process
$$ \int_{-1}^{+1}\rho(t)\frac{f(t)}{t-x}dt\approx\sum_{k=1}^n\alpha_{k,n}(x)f(x_k^{(n)})\qquad(-1<x<1), $$
wherein the singular integral is taken in the principal value sense. General conditions for convergence in the class of continuously differentiable functions $f$ are formulated. In the case of the weight function $\rho(t)=(\sqrt{1-t^2})^{-1}$, we investigate, under various assumptions on $f$, the convergence of a specific quadrature process.

UDC: 517.5

Received: 02.03.1970


 English version:
Mathematical Notes, 1972, 11:5, 316–321

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026