RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1971 Volume 10, Issue 4, Pages 407–414 (Mi mzm9729)

Elliptic curves $x^3+y^3=D$

A. G. Kisun'ko

M. V. Lomonosov State University, Moscow

Abstract: Equality of distributions is shown of even and odd values of the order of the zero at the point $s=1$ of $L$-functions of elliptic curves $x^3+y^3=D$, where $D$ is a positive integer not divisible by a cube.

UDC: 511

Received: 25.12.1970


 English version:
Mathematical Notes, 1971, 10:4, 667–671

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026