RUS
ENG
Full version
JOURNALS
// Matematicheskie Zametki
// Archive
Mat. Zametki,
1971
Volume 10,
Issue 4,
Pages
407–414
(Mi mzm9729)
Elliptic curves
$x^3+y^3=D$
A. G. Kisun'ko
M. V. Lomonosov State University, Moscow
Abstract:
Equality of distributions is shown of even and odd values of the order of the zero at the point
$s=1$
of
$L$
-functions of elliptic curves
$x^3+y^3=D$
, where
$D$
is a positive integer not divisible by a cube.
UDC:
511
Received:
25.12.1970
Fulltext:
PDF file (690 kB)
English version:
Mathematical Notes, 1971,
10
:4,
667–671
Bibliographic databases:
©
Steklov Math. Inst. of RAS
, 2026