RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1971 Volume 10, Issue 4, Pages 375–385 (Mi mzm9726)

Orthogonal bases for $L^p$ spaces

S. F. Gerasimov

Saratov State University

Abstract: The spectrum of a system of functions which are orthogonal on $[0, 1]$ is the set of all $p\in[1,\infty]$ such that the system forms a basis in $L^p[0, 1]$ ($L^\infty=C$). A set $E$ is called a \underbar{spectral set} if there exists a system of functions orthonormal on $[0, 1]$ whose spectrum is $E$. In this note we determine all spectral sets and construct an orthonormal system corresponding to each of them.

UDC: 517.5

Received: 26.11.1970


 English version:
Mathematical Notes, 1971, 10:4, 648–654

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026