RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1971 Volume 9, Issue 1, Pages 93–103 (Mi mzm9648)

This article is cited in 2 papers

Some remarks concerning the individual ergodic theorem of information theory

B. S. Pitskel'

M. V. Lomonosov Moscow State University

Abstract: Let $(X,\mu,T)$ be an ergodic dynamic system and let $\xi=(C_1,C_2,\dots)$ be a discrete decomposition of $X$. Conditions are considered for the existence almost everywhere of
$$ \lim_{n\to\infty}\frac1n|\log\mu(C_{\xi n}(x))|, $$
where $C_{\xi n}(x)$ is the element of the decomposition $\xi^n=\xi\vee T\xi\vee\dots<T^{n-1}\xi$ containing $x$. It is proved that the condition $H(\xi)<\infty$ is close to being necessary. If $T$ is a Markov automorphism and $\xi$ is the decomposition into states, then the limit exists, even if $H(\xi)=\infty$, and is equal to the entropy of the chain.

UDC: 517.9

Received: 19.11.1969


 English version:
Mathematical Notes, 1971, 9:1, 54–60

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026