RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1971 Volume 9, Issue 1, Pages 19–26 (Mi mzm9637)

This article is cited in 1 paper

Spectrum of the nonself-adjoint Schrödinger operator in unbounded regions

Kh. Kh. Murtazin

V. A. Steklov Mathematics Institute, Academy of Sciences of the USSR

Abstract: It is proved that the discrete spectrum of the operator $-\Delta+q(x)$ in the space $L_2(E_{2k})$ ($k\geqslant1$) where $q(x)$ is a measurable complex-valued function satisfying the condition $|q(x)|\leqslant Ce^{-\varepsilon|x|}$, having no finite limit points, and for $k=1$ the discrete spectrum consists of a finite number of points.

UDC: 513.88

Received: 02.10.1969


 English version:
Mathematical Notes, 1971, 9:1, 12–16

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026