RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1970 Volume 8, Issue 2, Pages 149–158 (Mi mzm9591)

A class of functions of a real variable

Yu. I. Alimov

Academy of Sciences of the USSR, Ural Branch

Abstract: An investigation of measurable almost-everywhere finite functions $\xi(t)$, $-\infty<t<+\infty$, for which
$$ \varphi_T^\xi(\tau_{(n)},\lambda_{(n)})=\frac1{2T}\int_{-T}^T\exp{i}\sum_{k=1}^n\lambda_k\xi(t-\tau_k)dt $$
tends to an asymptotic characteristic function $\varphi_\infty^\xi(\tau_{(n)},\lambda_{(n)})$ when $T\to\infty$. Here $n$ is any positive integer and $\tau_{(n)}=(\tau_1,\tau_2,\dots,\tau_n)$ is arbitrary. It is proved that the class of such functions $\xi(t)$ is larger than the class of Besicovich almost-periodic functions.

UDC: 519.2

Received: 09.09.1968


 English version:
Mathematical Notes, 1970, 8:2, 558–563

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026