RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1970 Volume 7, Issue 4, Pages 443–447 (Mi mzm9527)

This article is cited in 3 papers

On the maximal dual pairs of invariant subspaces of $J$-self-adjoint operators

H. Langer

Dresden Technical University

Abstract: In the $J$-spaces $\mathfrak{H}=\mathfrak{H}_1\oplus\mathfrak{H}_2$, with the infinite-dimensional components $\mathfrak{H}_k=P_k\mathfrak{H}$ ($k=1,2$), we can always find an operator $A$, for which there are at least two distinct invariant maximal dual pairs, such that if $[x,x]=0$ and $[Ax,x]=0$, then $x=0$.

UDC: 513.88

Received: 17.03.1969


 English version:
Mathematical Notes, 1970, 7:4, 269–271

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026