RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1970 Volume 7, Issue 3, Pages 289–293 (Mi mzm9507)

This article is cited in 2 papers

Distribution of poles of rational functions of best approximation

G. A. Volkov

M. V. Lomonosov Moscow State University

Abstract: This article describes the construction of an entire function $E(z)$ such that for any sequence $\{\overset{*}{r}_n(z)\}$ of rational functions of best approximation to $E(z)$ on the unit disc $K$, the corresponding set of poles $\{\overset{*}{\alpha}_{nk}\}$ is everywhere dense in the complement of $K$.

UDC: 517.5

Received: 20.03.1969


 English version:
Mathematical Notes, 1970, 7:3, 176–178

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026