RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2014 Volume 96, Issue 1, Pages 70–82 (Mi mzm9381)

This article is cited in 5 papers

Discrete Analogs of Farkas and Accola's Theorems on Hyperelliptic Coverings of a Riemann Surface of Genus 2

I. A. Mednykh

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk

Abstract: Discrete versions of Accola and Farkas' theorems on the hyperellipticity of coverings of a Riemann surface of genus 2 are proved.

Keywords: hyperelliptic graph, hyperelliptic covering, 2-edge-connected graph, genus of a graph, harmonic morphism of graphs, Riemann surface.

UDC: 519.177+517.545

Received: 03.03.2012
Revised: 09.11.2013

DOI: 10.4213/mzm9381


 English version:
Mathematical Notes, 2014, 96:1, 84–94

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026