RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2012 Volume 91, Issue 5, Pages 741–749 (Mi mzm9362)

This article is cited in 10 papers

Classification of $(v,3)$-Configurations

F. M. Malyshev, A. A. Frolov

Academy of Criptography of Russia

Abstract: A $(v,3)$-configuration is a nondegenerate matrix of dimension $v$ over the field $\mathrm{GF}(2)$ considered up to permutation of rows and columns and containing exactly three $1$'s in the rows and columns, while the inverse matrix has also exactly three $1$'s in the rows and columns. It is proved that, for each even $v\ge 4$, there is only one indecomposable $(v,3)$-configuration, while, for odd $v$, there are no such configurations, the only exception being the unique $(5,3)$-configuration.

Keywords: $(v,3)$-configuration, nondegenerate matrix, Möbius strip.

UDC: 519.142.1

Received: 12.11.2010

DOI: 10.4213/mzm9362


 English version:
Mathematical Notes, 2012, 91:5, 689–696

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026