RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2012 Volume 91, Issue 4, Pages 551–562 (Mi mzm9325)

This article is cited in 2 papers

Properties of the Székely–Móri Symmetry Criterion Statistics in the Case of Binary Vectors

A. M. Zubkova, D. O. Men'sheninb

a Steklov Mathematical Institute, Russian Academy of Sciences
b M. V. Lomonosov Moscow State University

Abstract: We study the properties of the statistics of the Székely–Móri criterion for the symmetry of a distribution in Euclidean space for the class of discrete distributions concentrated on the set of vertices of the $d$-dimensional cube. We obtain exact and asymptotic (as $d\to\infty$) formulas for the first moments of the statistic, prove limit theorems, and give examples showing how the efficiency of the criterion depends on the form of the distribution.

Keywords: Székely–Móri symmetry criterion, random vector, discrete distribution, normal distribution, limit distribution, $U$-statistics.

UDC: 519.22

Received: 17.11.2010

DOI: 10.4213/mzm9325


 English version:
Mathematical Notes, 2012, 91:4, 517–527

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026