RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2013 Volume 94, Issue 4, Pages 591–599 (Mi mzm9264)

This article is cited in 13 papers

On the Lipschitz Property of a Class of Mappings

R. R. Salimov

Institute of Applied Mathematics and Mechanics, Ukraine National Academy of Sciences, Donetsk

Abstract: Open discrete annular $Q$-mappings with respect to the $p$-modulus in $\mathbb R^n$, $n\ge 2$, are considered in this paper. It is established that such mappings are finite Lipschitz for $n-1<p<n$ if the integral mean value of the function $Q(x)$ over all infinitesimal balls $B(x_0,\varepsilon)$ is finite everywhere.

Keywords: open discrete annular $Q$-mapping, $p$-modulus of a family of curves, finite Lipschitz mapping, Lebesgue measure, homeomorphism, condenser.

UDC: 517.5

Received: 17.10.2011
Revised: 22.01.2013

DOI: 10.4213/mzm9264


 English version:
Mathematical Notes, 2013, 94:4, 559–566

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026