RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2012 Volume 92, Issue 6, Pages 872–883 (Mi mzm9186)

This article is cited in 1 paper

On Estimates of Lengths of Lemniscates

O. N. Kosukhin

M. V. Lomonosov Moscow State University

Abstract: For any natural number $n$ and any $C>0$, we obtain an integral formula for calculating the lengths $|L(P_n,C)|$ of the lemniscates
$$ L(P_n,C):=\{z:|P_n(z)|=C\} $$
of algebraic polynomials $P_n(z):=z^n+c_{n-1}z^{n-1}+\dots+c_0$ in the complex variable $z$ with complex coefficients $c_j$, $j=0, \dots, n-1$, and establish the upper bound for the quantities $\lambda_n:=\sup\{|L(P_n,1)|: P_n(z)\}$, which is currently best for $3\leq n\leq10^{14}$. We also study the properties of the derivative $S'(C)$ of the area function $S(C)$ of the set $\{z:|P_n(z)|\leq C\}$.

Keywords: lemniscate of an algebraic polynomial, length of a lemniscate, Lebesgue measure, conformal $n$-sheeted mapping, Jordan domain, Jordan arc.

UDC: 517.54

Received: 19.07.2011
Revised: 29.09.2011

DOI: 10.4213/mzm9186


 English version:
Mathematical Notes, 2012, 92:6, 779–789

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026