RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2013 Volume 93, Issue 1, Pages 45–55 (Mi mzm9109)

Asymptotics of Series Arising from the Approximation of Periodic Functions by Riesz and Cesàro Means

V. P. Zastavnyi

Donetsk National University

Abstract: Asymptotic expansions in powers of $\delta$ as $\delta\to+\infty$ of the series
$$ \sum_{k=0}^\infty(-1)^{(\beta+1)k}\frac{Q((\delta^\alpha-(ak+b)^\alpha)_+)}{(ak+b)^{r+1}}, $$
where $\beta\in\mathbb Z$, $\alpha,a,b>0$, and $r\in\mathbb C$, while $Q$ is an algebraic polynomial satisfying the condition $Q(0)=0$, are obtained. In special cases, these series arise from the approximation of periodic differentiable functions by the Riesz and Cesàro means.

Keywords: Riesz mean, Cesàro mean, periodic differentiable function, approximation of periodic functions, algebraic polynomial, Hurwitz function, Euler gamma function, Bernoulli spline, Euler spline, Bernoulli polynomial.

UDC: 517.518.83+517.15

Received: 12.09.2010

DOI: 10.4213/mzm9109


 English version:
Mathematical Notes, 2013, 93:1, 58–68

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026