RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2012 Volume 91, Issue 2, Pages 270–284 (Mi mzm9077)

Properties of Kagi and Renko Moments for Homogeneous Diffusion Processes

M. A. Spiryaev

M. V. Lomonosov Moscow State University

Abstract: For a homogeneous diffusion process $(X_t)_{t\geqslant 0}$, we consider problems related to the distribution of the stopping times
\begin{gather*} \gamma_{\max}=\inf\Bigl\{t\ge 0:\sup_{s\le t}X_s-X_t \ge H\Bigr\},\qquad \gamma_{\min}=\inf \Bigl\{t\ge 0: X_t-\inf_{s\le t}X_s \ge H \Bigr\}, \\ \kappa_0=\inf\Bigl\{t\ge 0:\sup_{s\le t}X_s-\inf_{s\le t}X_s \ge H\Bigr\}. \end{gather*}
The results obtained are used to construct an inductive procedure allowing us to find the distribution of the increments of the process $X$ between two adjacent kagi and renko instants of time.

Keywords: homogeneous diffusion process, Brownian motion, stopping time, kagi instant of time, renko instant of time, Laplace transform.

UDC: 517

Received: 14.03.2011

DOI: 10.4213/mzm9077


 English version:
Mathematical Notes, 2012, 91:2, 259–271

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026